Telegram Group & Telegram Channel
📊 Промт дня: быстрый разведочный анализ (EDA) нового датасета

Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.

Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты:
• Определи типы переменных (числовые, категориальные и пр.).
• Проверь наличие и долю пропущенных значений по столбцам.
• Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.).
• Оцени распределения признаков и выдели потенциальные выбросы.
• Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.


🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.

Поддерживается использование специализированных инструментов:
📝 pandas_profiling / ydata-profiling — для автоматического отчета,
📝 sweetviz — для визуального сравнения датасетов,
📝 seaborn и matplotlib — для точечных визуализаций распределений и корреляций.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6441
Create:
Last Update:

📊 Промт дня: быстрый разведочный анализ (EDA) нового датасета

Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.

Промт:

Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты:
• Определи типы переменных (числовые, категориальные и пр.).
• Проверь наличие и долю пропущенных значений по столбцам.
• Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.).
• Оцени распределения признаков и выдели потенциальные выбросы.
• Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.


🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.

Поддерживается использование специализированных инструментов:
📝 pandas_profiling / ydata-profiling — для автоматического отчета,
📝 sweetviz — для визуального сравнения датасетов,
📝 seaborn и matplotlib — для точечных визуализаций распределений и корреляций.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6441

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from sa


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA